Уважаемые коллеги!
В связи с экономической нестабильностью, с 1 марта 2022 года на большинство оборудования действуют обновленные цены, и, к сожалению, тенденция к дальнейшему возможному повышению еще сохраняется.
Корректные розничные цены будут размещены на нашем сайте сразу после того, как производители оборудования и расходных материалов смогут стабилизировать цены в текущих условиях.
Просим Вас дополнительно уточнять актуальные цены у менеджеров ЕЦНК. Надеемся на Ваше понимание и дальнейшее взаимовыгодное сотрудничество.
15 сентября 2022 года компания Единый Центр Неразрушающего Контроля (ЕЦНК) проведет интерактивное научно-практическое мероприятие Большой Тест-Драйв «GLOBAL FORUM 2022».
Присоединяйтесь!
Компактный ультразвуковой дефектоскоп-томограф А1525 SOLO – это высокоточное оборудование для неразрушающего контроля материалов, основанное на принципе работы ультразвуковой томографии. Принцип работы основан на использовании ультразвуковых волн для сканирования и измерения внутренних дефектов в различных материалах. Ультразвуковые волны проникают в исследуемый материал, затем регистрируются и обрабатываются специализированным программным обеспечением для получения подробного изображения внутренних структур объекта.
Компактный ультразвуковой дефектоскоп-томограф А1525 SOLO обладает рядом преимуществ, включая компактные размеры и мобильность, что обеспечивает удобство в транспортировке и использовании. Это оборудование также отличается высокой чувствительностью и точностью при обнаружении дефектов, а также позволяет проводить контроль различных материалов.
Компактный ультразвуковой дефектоскоп-томограф А1525 SOLO представляет собой портативное устройство, включающее в себя генератор ультразвуковых волн, приемник сигналов, дисплей для визуализации результатов контроля и компьютер с специализированным программным обеспечением для обработки данных. Его компактные размеры делают прибор незаменимым в обследовании различных объектов и структур.
Сферы применения компактного ультразвукового дефектоскопа-томографа А1525 SOLO разнообразны. Он может применяться для контроля сварных соединений, обнаружения и анализа дефектов в металлических и композитных материалах, контроля бетонных конструкций, поиска скрытых дефектов в материалах и конструкциях, а также для контроля толщины стенок трубопроводов и арматуры. Прибор используется в нефтегазовой отрасли, авиации, судостроении и других промышленных отраслях для обследования технических объектов.
Условия работы компактного ультразвукового дефектоскопа-томографа А1525 SOLO включают использование оборудования в условиях повышенной влажности, пыли, температурных колебаний и вибраций. Технические характеристики включают в себя частотные характеристики, разрешающую способность, глубину проникания вещества, скорость сканирования и возможность визуализации результатов контроля в реальном времени. Программные возможности включают в себя сохранение данных, анализ и визуализацию полученных результатов, а также возможность создания отчетов и формирования трехмерных моделей дефектов для более подробного анализа.
Компактный ультразвуковой дефектоскоп-томограф А1525 SOLO обеспечивает возможность проведения качественного контроля при минимальной подготовке поверхности и без необходимости демонтажа объектов, что делает его удобным и эффективным инструментом в различных сферах промышленности.
В дефектоскопе-томографе A1525 Solo реализованы пять режимов визуализации образов несплошностей, адаптированных к их виду. Данные режимы выбираются в зависимости от различных задач контроля и специфики объекта. Для простой идентификации этих режимов используются символы, приведенные ниже. Там же указаны основные характеристики режимов.
Дефектоскоп в режиме ТОМОГРАФ воспроизводит на экране изображения сечений материала контролируемого объекта. Будем называть их томограммами. В этом режиме для излучения и приёма ультразвука используются многоэлементные антенные решётки продольных и поперечных УЗ волн. В приборе в качестве базовых используются 16-элементные линейные антенные решётки. Устройство данных антенных решёток схематично показано на рисунке 2-1.
Решётка продольных волн представляет собой ряд одинаковых прямоугольных пьезоэлементов, приклеенных к тонкому протектору из твёрдой керамики. Они уложены длинными сторонами друг к другу с некоторым шагом. Каждый пьезоэлемент решётки является прямым совмещённым УЗ преобразователем. Весь ряд пьезоэлементов расположен вдоль продольной оси рабочей поверхности решётки, совпадающей с осью координат X. Общая длина этого ряда в направлении продольной оси образует активную апертуру решётки. Длина одного пьезоэлемента (она перпендикулярна продольной оси решётки) называется пассивной апертурой.
Антенная решётка поперечных волн отличается от решётки продольных волн только тем, что в ней каждый пьезоэлемент установлен на свою клинообразную микропризму. Благодаря трансформации продольной волны в поперечную при преломлении УЗ колебаний на границе призма – металл в ОК излучаются поперечные УЗ волны. В этой решётке каждый пьезоэлемент является, по сути, наклонным УЗ преобразователем.
Основной тип томограмм, который используется для анализа информации при ручном контроле – В-томограмма или В-Скан. Это изображение сечения ОК, плоскость которого перпендикулярна поверхности объекта и совпадает с продольной осью рабочей поверхности антенной решётки. В этой плоскости лежат акустические оси всех элементов решётки, и в этой плоскости происходит визуализация внутренней структуры ОК (рисунок 2-2).
Плоскость визуализации по терминологии традиционной дефектоскопии можно назвать также плоскостью падения или основной плоскостью.
Все вероятные нарушения сплошности материала ОК, границы раздела сред (металл – воздух, металл – жидкость), а также возможные проявления нерабочих типов УЗ волн отображаются на экране прибора в виде засветок (точек, пятен, полос) другой яркости или цвета по отношению к фону. Эти засветки будем называть образами. Их форма, размеры и яркость (цвет) зависят от вызвавшей их причины.
Часто, (но не всегда), форма образа может быть похожа на форму отражающей границы достаточно крупной несплошности металла, попавшей в визуализируемое сечение. Малоразмерные несплошности дают образы в виде сосредоточенных пятен.
При сканировании ОК в направлении поперечной оси рабочей поверхности антенной решётки (в направлении оси Y, как показано на рисунке 2-3) с использованием датчика пути происходит последовательная запись в память прибора В-томограмм с некоторым выбранным шагом между томограммами. При этом на экран выводятся изображения С-типа и D-типа (кратко С-Скан и D-Скан). Эти изображения извлекаются из массива записываемых В-Сканов.
С-Скан – изображение вида «сверху». Оно представляет собой изображение сечения ОК, плоскость которого параллельна внешней поверхности ОК и расположена на некоторой выбранной глубине.
D-Скан – изображение вида «сбоку». Оно отображает сечение ОК, перпендикулярное его поверхности и параллельное направлению сканирования.
Все три сечения ОК, отображаемые томограммами В-, С- и D- типов, взаимно перпендикулярны.
Принцип действия томографа значительно отличается от действия приборов с фазированными антенными решётками. Излучение и приём УЗ колебаний в томографе происходит поочерёдно отдельными парами пьезоэлементов (элементов) антенной решётки. Эту очерёдность поясняет рисунок 2-4.
Очерёдность такова:
первый – излучатель, он же – приёмник;
Далее очерёдность повторяется, но со второго элемента, затем с третьего и т.д.
Полный цикл излучения и приёма сигналов заканчивается, когда последний 16-й элемент антенной решётки пошлёт в ОК зондирующий импульс и он же примет УЗ сигналы из него.
При такой работе в прибор попадают полностью независимые друг от друга реализации УЗ колебаний от каждой пары элементов антенной решётки (излучатель – приёмник).
Независимость реализаций заключается в том, что каждая из них является откликом материала ОК только на один зондирующий импульс одного элемента решётки. Никаких сложений акустических полей от нескольких и даже двух элементов решётки здесь нет, поэтому нет никаких УЗ пучков и управления ими. В любой момент времени есть только рассеянное слабонаправленное излучение УЗ импульса с таким же малонаправленным приёмом УЗ колебаний из ОК (рисунок 2-5).
После полного перебора всех пар элементов антенной решётки с излучением и приёмом УЗ колебаний цикл зондирования начинается снова по приведённой схеме. В каждом таком цикле реконструируется одна В-томограмма. Перебор пар элементов в цикле происходит очень быстро, частота смены изображений на экране прибора составляет от 20 до 60 Гц.
Реконструкция (восстановление) изображения (томограммы) – это процесс работы вычислительного блока томографа, заключающийся в преобразовании по определённому алгоритму массива реализаций УЗ колебаний, принятых из ОК, в массив данных об отражательной способности точек визуализируемого пространства ОК.
Реконструкция томограммы происходит следующим образом (рисунок 2-6).
Для каждой точки томограммы из каждой принятой реализации выбираются короткие отрезки колебаний длительностью равной длине зондирующего импульса (c∙τi) (где с – скорость УЗ волны, τi – длительность зондирующего импульса) и временем пролёта УЗ импульса от излучившего зондирующий сигнал элемента решётки к визуализируемой точке материала ОК и обратно к приёмному элементу. Эти выбранные отрезки суммируются, и результирующая сумма (в виде такого же отрезка колебаний) записывается в отдельную ячейку памяти. Если в какой-либо визуализируемой точке ОК есть неоднородность материала, то эхосигналы от неё, присутствующие в каждой реализации, накапливаются (складываются в фазе) в ячейке памяти, соответствующей этой точке ОК. Если неоднородности нет, то в памяти накапливаются только колебания шумов (рисунок 2-7).
Затем колебания в этих ячейках детектируются, и результирующие числа, пропорциональные отражательной способности соответствующих точек материала ОК, отображаются на экране в виде точек разной яркости или цвета. Таким образом, томограмма представляет собой прямоугольный растр точек, яркость или цвет которых пропорциональны отражательной способности соответствующих точек материала ОК. Причём каждая точка томограммы получена как результат виртуальной фокусировки всех элементов решётки в соответствующую ей точку ОК.
Поскольку АР фокусируется в каждую точку пространства, именно фокальная зона решётки и определяет все амплитудные и геометрические зависимости образа несплошности от её координат, размеров, типа и ориентации.
Фокальной зоной любой акустической фокусирующей системы является область пространства вокруг фокуса, в пределах которой амплитуда акустических колебаний превышает определённый уровень относительно её значения в фокусе. Для режима излучения-приёма это область, внутри которой точечный отражатель даёт эхосигнал с амплитудой, превышающей определенный уровень от значения амплитуды эхосигнала от отражателя в фокусе.
Для оценки качества изображения, разрешающей способности прибора и его измерительных свойств особое значение имеют размеры фокальной зоны в основной плоскости падения УЗ волн антенной решётки XOZ (B-Скан) (рисунок 2-8).
Размер br – размер фокальной зоны вдоль направления на фокус (лучевой размер фокальной зоны) почти не зависит от фокусного расстояния, если оно превышает размер активной апертуры решётки. В этом случае br в основном определяется длиной зондирующего импульса дефектоскопа:
br ≈ c × t ,
где c – скорость УЗ волн в ОК;
t – длительность зондирующего импульса.
Главное значение имеет размер bf – фронтальный размер фокальной зоны в направлении перпендикулярном линии, проходящей через центр апертуры антенной решётки и точку фокуса. Именно этот размер зависит от фокусного расстояния и от угла α между нормалью к апертуре решётки и направлением на точку фокуса. Угол α назовем направляющим углом.
Размер bf фокусирующей системы, работающей на излучение и приём, по уровню минус 6 дБ от максимума зависит от длины УЗ волны λ и угла θ, под которым «видна» активная апертура системы из точки фокусировки и может быть вычислен по формуле:
На рисунке 2-9 приведен график зависимости фронтального размера bf фокальной зоны от координат x, z для антенной решётки поперечных волн М9170 с апертурой А = 28 мм и рабочей частотой 4 МГц. Длина волны в стали λ = 0,8 мм. На графике величина bf представлена линиями равных значений в миллиметрах.
Видно, что с увеличением фокусного расстояния и направляющего угла α, размер bf фокальной зоны увеличивается. Так, например, в точке с координатами x = 140 мм и z = 65 мм фокальная зона равна 10,5 мм, а при той же глубине и x = 50 мм – порядка 2,9 мм. При углах α больше 80° даже при небольших расстояниях от АР параметр bf становится большой.
Причина ухудшения фокусировки антенной решётки с ростом направляющего угла α в монотонном уменьшении её эффективной апертуры Аэ = А cosα вплоть до нуля при α = 90°. Поэтому этот сектор между углами 80° и 90° малопригоден при контроле. Стоит определить границу, за которой фокусировка антенной решётки малоэффективна. Критерием может служить примерное равенство фронтального размера фокальной зоны ширине пучка УЗ волн от несфокусированного преобразователя. Согласно фундаментальному правилу, фокусировка возможна только в пределах ближнего поля синфазного (несфокусированного) излучателя, границей является дальность, равная протяженности ближней зоны излучателя. А ширина пучка несфокусированного преобразователя на границе ближней зоны в эхо-режиме по уровню –6 дБ от максимума приблизительно равна четверти апертуры преобразователя.
Поскольку антенная решётка наклонная, то каждому направляющему углу α соответствует своя апертура Аэ и наклонная дальность Rб, определяющая границу ближней зоны:
Поэтому граница ближней зоны антенной решётки тоже зависит от угла α. И этой границей для конкретной антенной решётки служит одна из кривых на поле графика зависимости фронтального размера фокальной зоны от координат фокуса (рисунок 2-9). Это кривая со значением размера bf, равным четверти активной апертуры А антенной решётки.
В частности, для антенной решётки М9170 граница ближней зоны – это кривая bf = 7 мм, так как её апертура равна 28 мм. Область графика на рисунке 2-9 внутри этой кривой (левее и ниже) – ближняя зона. Вне этой кривой (правее и выше) – дальняя зона, в которой фокусировка почти отсутствует и далее совсем пропадает, то есть антенная решетка работает как обычный преобразователь.
При реконструкции томограммы фокальная зона решётки последовательно «помещается» в каждую визуализируемую точку пространства ОК в пределах выбранной зоны обзора. Помещается, конечно, виртуально, путем выборок соответствующих отрезков реализаций УЗ колебаний, принятых элементами антенной решётки, и когерентного суммирования этих отрезков для получения отражающей способности каждой точки материала ОК. Образ отражателя на томограмме формируется как результат наложения образов точечных отражателей (блестящих точек), из которых состоит отражатель. Если его физические размеры меньше длины УЗ волны или соизмеримы с ней, то он представляет собой всего одну блестящую точку. Тогда на томограмме отображается образ фокальной зоны, подобный образу на рисунке 2-10.
Если отражатель больше нескольких длин волн, то он может содержать несколько блестящих точек, которые дают изображение слившейся группы образов фокальных зон. Поэтому размеры и амплитуда образа отражателя на томограмме зависят от соотношения физических размеров отражателя и размеров фокальной зоны антенной решётки там, где расположен отражатель (рисунок 2-11).
Эти зависимости можно использовать для решения задач определения типа дефекта – объёмный / плоскостной и измерения физических размеров дефектов. Но в рамках данного документа данные решения не рассматриваются.
Параметр |
Значение |
Размер томограммы |
256 x 160 точек |
Шаг реконструкции томограммы |
0,1 – 2,0 мм |
Диапазон устанавливаемых рабочих частот ультразвука |
1 – 10 МГц |
Диапазон измерений глубины залегания дефекта (по стали) с цифрофокусируемой антенной решеткой поперечных волн M9170 |
2 – 300 мм |
Тип дисплея (разрешение) |
5,7″ TFT (640 x 480) |
Источник питания |
литиевый аккумулятор |
Номинальное значение напряжения питания, |
11,1 В |
Время непрерывной работы от аккумулятора, не менее |
6 ч |
Габаритные размеры электронного блока |
260 х 157 х 43 мм |
Масса электронного блока |
800 г |
Диапазон рабочих температур |
от -20 до +55ºC |
Наименование |
А1525 Solo - электронный блок ультразвукового дефектоскопа (ультразвукового томографа с цифровой фокусировкой антенной решетки) |
Антенная решетка M9170 4.0V60R26X10CS |
Кабель LEMO-LEMO одинарный 1,2 м |
Преобразователь S3568 2.5A0D10CL |
Преобразователь S5182 2.5А65D12CS |
Преобразователь S5096 5.0А70D6CS |
Сетевой адаптер с кабелем 220 В - 15 В |
Кабель USB A - Micro B |
Носитель с документацией и ПО |
Калибровочный образец V2/25 |
Планшет D15 |
Чехол D15 |
Гель УЗ -30°C...+100°C, 0,1 кг |
Жесткий кейс М20 |
Компактный и удобный дефектоскоп с режимом томографа. Ранее работал с А1212 Мастер, поэтому прибор привычный.
Компания ЕЦНК занимается продажей современного оборудования для осуществления контроля качества выпускаемых изделий на производстве. В интернет магазине ECNK.ru Вы можете приобрести А1525 SOLO компактный ультразвуковой дефектоскоп-томограф по самой доступной цене в Горно-Алтайске.
Мы предлагаем следующие варианты доставки: самовывоз, курьером или до терминала “Деловых линий” в вашем городе. Наш адрес: ул. Чорос Гуркина, 39/6. Режим работы: Пн.-Пт. с 9:00 до 18:00.
Для того, чтобы заказать доставку по Горно-Алтайску:
Кроме того, вы можете заказать бесплатную консультацию специалиста. Заполните форму обратной связи, укажите ФИО, номер телефона и адрес электронной почты.